
LLVM Control Flow Integrity (CFI)
Support for Rust Design Doc

go/rust-cfi-design-doc
Authors: rcvalle@
Status: Current

This document describes the overall design of LLVM CFI support for the Rust compiler. This
document does not describe LLVM SafeStack or LLVM ShadowCallStack (i.e., backward-edge
control flow protection) support for the Rust compiler.

This document is for software engineers working with the Rust programming language that want
information about the overall design of LLVM CFI support for the Rust compiler. This document
assumes prior knowledge of the Rust programming language and its toolchain.

Objective
Add LLVM CFI support to the Rust compiler (i.e., rustc).

Background
With the increasing popularity of Rust both as a general purpose programming language and as
a replacement for C and C++ because of its memory and thread safety guarantees, many
companies and projects are adopting or migrating to Rust. One of the most common paths to
migrate to Rust is to gradually replace C or C++ with Rust in a program written in C or C++.

Rust provides interoperability with foreign code written in C via Foreign Function Interface (FFI).
However, foreign code does not provide the same memory and thread safety guarantees that
Rust provides, and is susceptible to memory corruption and concurrency issues.1 Therefore, it is
generally accepted that linking foreign C- or C++-compiled code into a program written in Rust
may degrade the security of the program.[1]–[3]

While it is also generally believed that replacing sensitive C or C++ with Rust in a program
written in C or C++ improves the security of the program, Papaevripides and Athanasopoulos[4]
demonstrated that this is not always the case, and that linking foreign Rust-compiled code into a
program written in C or C++ with modern exploit mitigations, such as control flow protection,
may actually degrade the security of the program, mostly due to the absence of support for

1 Modern C and C++ compilers provide exploit mitigations to increase the difficulty of exploiting
vulnerabilities resulting from these issues. However, some of these exploit mitigations are not applied
when linking foreign C- or C++-compiled code into a program written in Rust, mostly due to the absence
of support for these exploit mitigations in the Rust compiler (see Table I).

http://go/rust-cfi-design-doc


these exploit mitigations in the Rust compiler, mainly forward-edge control flow protection. (See
Control flow protection.)

The Rust compiler currently does not support forward-edge control flow protection when

● using Unsafe Rust.[1],[6]
● linking foreign C- or C++-compiled code into a program written in Rust.[1]–[3]
● linking foreign Rust-compiled code into a program written in C or C++.[4]

Table I summarizes interoperability-related risks when building programs for the Linux operating
system on the AMD64 architecture and equivalent without forward-edge control flow protection
support in the Rust compiler.

Table I
Summary of interoperability-related risks when building programs for the Linux operating system on the
AMD64 architecture and equivalent without forward-edge control flow protection support in the Rust

compiler.

Without using Unsafe Rust Using Unsafe Rust

Rust-compiled code only ▼I Indirect branches in
Rust-compiled code are not
validated.2

▼ Unsafe Rust is susceptible to
memory corruption and
concurrency issues.
▼ Indirect branches in
Rust-compiled code are not
validated.

Linking foreign C- or
C++-compiled code into a
program written in Rust

▼ Foreign code is susceptible to
memory corruption and
concurrency issues.
▼ Indirect branches in
Rust-compiled code are not
validated.

▼ Foreign code is susceptible to
memory corruption and
concurrency issues.
▼ Unsafe Rust is susceptible to
memory corruption and
concurrency issues.
▼ Indirect branches in
Rust-compiled code are not
validated.

Linking foreign Rust
-compiled code into a
program written in C or C++3

▲II Indirect branches in C- and
C++-compiled code are
validated.
▼ C and C++ are susceptible to
memory corruption and
concurrency issues.
▼ Indirect branches in
Rust-compiled code are not

▲ Indirect branches in C- and
C++-compiled code are
validated.
▼ C and C++ are susceptible to
memory corruption and
concurrency issues.

3 Assuming forward-edge control flow protection is enabled.

2 An attack that successfully allows a Rust-compiled code only program, without using Unsafe Rust, to
have its control flow redirected as a result of a memory corruption or concurrency issue is yet to be
demonstrated.



validated. ▼ Unsafe Rust is susceptible to
memory corruption and
concurrency issues.
▼ Indirect branches in
Rust-compiled code are not
validated.

IRed down-pointing triangle (▼) precedes a negative risk indicator.
IIGreen up-pointing triangle (▲) precedes a positive risk indicator.

Without forward-edge control flow protection support in the Rust compiler, indirect branches in
Rust-compiled code are not validated, allowing forward-edge control flow protection to be
trivially bypassed as demonstrated by Papaevripides and Athanasopoulos[4]. Therefore, the
absence of support for forward-edge control flow protection in the Rust compiler is a major
security concern[5] when migrating to Rust by gradually replacing C or C++ with Rust, and when
C or C++ and Rust-compiled code share the same virtual address space.

Control flow protection
Control flow protection is an exploit mitigation that protects programs from having their control
flow redirected. It is classified in two categories:

● Forward-edge control flow protection
● Backward-edge control flow protection

Forward-edge control flow protection
Forward-edge control flow protection protects programs from having their control flow redirected
by performing checks to ensure that destinations of indirect branches are one of their valid
destinations in the control flow graph. The comprehensiveness of these checks varies per
implementation. This is also known as “forward-edge control flow integrity (CFI)”.

Newer processors provide hardware assistance for forward-edge control flow protection, such
as ARM Branch Target Identification (BTI), ARM Pointer Authentication, and Intel Indirect
Branch Tracking (IBT) as part of Intel Control-flow Enforcement Technology (CET). However,
ARM BTI- and Intel IBT-based implementations are less comprehensive than software-based
implementations such as LLVM ControlFlowIntegrity (CFI)[7], and the commercially available
grsecurity/PaX Reuse Attack Protector (RAP)[8].

Backward-edge control flow protection
Backward-edge control flow protection protects programs from having their control flow
redirected by performing checks to ensure that destinations of return branches are one of their
valid sources (i.e., call sites) in the control flow graph. Backward-edge control flow protection is
outside the scope of this document.



Detailed design
LLVM CFI support for the Rust compiler will be implemented similarly to how it is implemented
for Clang. It will be implemented by adding support for emitting type metadata and checks to the
Rust compiler code generation.

The Rust compiler provides support for multiple code generation backends.[9] The actual code
generation is done by a third-party library, such as LLVM. The rustc_codegen_ssa crate
contains backend-agnostic code and provides an abstraction layer and interface for backends to
implement, such as implemented in the rustc_codegen_llvm crate.

MIR is the Rust compiler Mid-level Intermediate Representation. In MIR, there is no difference
between method calls, overloaded operators, and function calls anymore. (Method calls and
overloaded operators are lowered to the same kind of terminator that function calls are.)

The rustc_codegen_ssa::mir::block module lowers MIR blocks and their terminators to the
selected backend intermediate representation (IR), such as LLVM IR. It is the module that does
the code generation for function calls.

The do_call method of the TerminatorCodegenHelper type in the
rustc_codegen_ssa::mir::block module does the code generation for function calls,
including all indirect function calls. It uses the call and invoke methods of the selected
backend Builder. The call and invoke methods of the selected backend Builder build the
call in the selected backend IR, making these the preferred location for emitting type checks.

To emit type metadata and checks, the type membership abstraction will be added to the to
backend-agnostic code for backends that support control flow protection using type membership
(i.e., testing whether a given pointer is associated with a type identifier), such as LLVM, to
implement.

LLVM CFI support for the Rust compiler work is broken in these steps:

● Create tracking issue.
● Add option to the Rust compiler driver and frontend.
● Add support for emitting type metadata and checks to the Rust compiler code

generation. (Broken in detailed steps below.)
● Implement Rust-compiled code only LLVM CFI support by using Rust-specific type

metadata identifiers.
● Define type metadata identifiers for cross-language LLVM CFI support.
● Change initial implementation to use the defined type metadata identifiers for

cross-language LLVM CFI support.
● Create documentation and tests.



Add support for emitting type metadata and checks to the Rust compiler code generation work
is broken in two categories:

● Add type membership abstraction to backend-agnostic code.
● Implement type membership abstraction for LLVM backend.

Add type membership abstraction to backend-agnostic code work is broken in these steps:

● Add support for computing a type identifier for a given FnAbi or FnSig to
rustc_symbol_mangling crate. (See Type metadata.)

● Add type_test method declaration to backend-agnostic IntrinsicCallMethods trait
declaration for backends to implement. The type_test method should test whether a
given pointer is associated with a type identifier.

● Add TypeMembershipMethods supertrait to backend-agnostic TypeMethods subtrait for
backends to implement. These methods should emit type metadata for functions.

Implement type membership abstraction for LLVM backend work is broken in these steps:

● Add type_test method implementation to LLVM backend IntrinsicCallMethods trait
implementation using llvm.type.test intrinsic. The LowerTypeTests link-time
optimization pass replaces calls to the llvm.type.test intrinsic with code to test type
membership.

● Add TypeMembershipMethods supertrait implementation to LLVM backend
TypeMethods subtrait implementation and any necessary FFI bindings/declarations to
the rustc_codegen_llvm::llvm module.

● Add support for emitting type metadata for functions to declare_fn method of LLVM
backend CodegenCx implementation.

● Add support for emitting type checks to call and invoke methods of LLVM backend
Builder implementation.

Type metadata
LLVM uses type metadata to allow IR modules to aggregate pointers by their types.[10] This
type metadata is used by LLVM CFI to test whether a given pointer is associated with a type
identifier (i.e., test type membership).

Clang uses the Itanium C++ ABI's[11] virtual tables and RTTI typeinfo structure name[12] as
type metadata identifiers for function pointers. The typeinfo name encoding is a two-character
code (i.e., “TS”) prefixed to the type encoding for the function.

For cross-language LLVM CFI support, a compatible encoding must be used by either

1. using Itanium C++ ABI mangling for encoding (which is currently used by Clang).



2. creating a new encoding for cross-language CFI and using it for Clang and the Rust
compiler (and possibly other compilers).

And

● provide comprehensive protection for Rust-compiled only code if used as main encoding
(and not require an alternative Rust-specific encoding for Rust-compiled only code).

● provide comprehensive protection for C- and C++-compiled code when linking foreign
Rust-compiled code into a program written in C or C++.

● provide comprehensive protection across the FFI boundary when linking foreign
Rust-compiled code into a program written in C or C++.

Providing comprehensive protection for Rust-compiled only code
if used as main encoding
This item is satisfied by the encoding being able to comprehensively encode Rust types. Both
using Itanium C++ ABI mangling for encoding (1) and creating a new encoding for
cross-language CFI (2) may satisfy this item by providing support for (language or vendor)
extended types, by defining a comprehensive encoding for Rust types using (language or
vendor) extended types and implementing it in the Rust compiler.

Providing comprehensive protection for C- and C++-compiled
code when linking foreign Rust-compiled code into a program
written in C or C++
This item is satisfied by the encoding being able to comprehensively encode C and C++ types,
and Clang being able to continue to use a comprehensive encoding for C- and C++-compiled
code when linking foreign Rust-compiled code into a program written in C or C++.

Both using Itanium C++ ABI mangling for encoding (1) and creating a new encoding for
cross-language CFI (2) may satisfy this item by providing support for (language or vendor)
extended types. However, creating a new encoding for cross-language CFI (2) also requires
defining a comprehensive encoding for C and C++ types using (language or vendor) extended
types and implementing it in Clang, so it is able to continue to use a comprehensive encoding
for C- and C++-compiled code when linking foreign Rust-compiled code into a program written
in C or C++. This introduces as much complexity and work as redefining Itanium C++ ABI
mangling and reimplementing it in Clang.

Additionally, creating a new encoding for cross-language CFI (2), depending on its
requirements, may be required to use a generalized encoding across the FFI boundary. This
may result in using a generalized encoding for all C- and C++-compiled code instead of across
the FFI boundary only (because there is no indication to Clang of which functions are called
across the FFI boundary), or may require changes to Clang to use the generalized encoding



across the FFI boundary only (which may also require new Clang extensions and changes to C
and C++ code and libraries to indicate which functions are called across the FFI boundary).

Either using a generalized encoding for all C- and C++-compiled code or across the FFI
boundary do not satisfy this or the following item, and will degrade the security of the program
when linking foreign Rust-compiled code into a program written in C or C++ because the
program previously used a more comprehensive encoding for all its compiled code.

Providing comprehensive protection across the FFI boundary
when linking foreign Rust-compiled code into a program written in
C or C++
This item is satisfied by being able to encode uses of Rust or C types across the FFI boundary
by either

● changing the Rust compiler to be able to identify and encode uses of C types across the
FFI boundary.

● changing Clang to be able to identify and encode uses of Rust types across the FFI
boundary.

Both using Itanium C++ ABI mangling for encoding (1) and creating a new encoding for
cross-language CFI (2) require changing either the Rust compiler or Clang to satisfy this item,
and may also require changes to Rust or C and C++ code and libraries.

However, as described in the previous item, creating a new encoding for cross-language CFI
(2), depending on its requirements, may be required to use a generalized encoding across the
FFI boundary, and while using a generalized encoding across the FFI boundary does not require
changing the Rust compiler or Clang to be able to identify and encode uses of Rust or C types
across the FFI boundary, it does not satisfy this item either, and will degrade the security of the
program when linking foreign Rust-compiled code into a program written in C or C++ because
the program previously used a more comprehensive encoding for all its compiled code.

Using Itanium C++ ABI mangling for encoding (1) versus creating
a new encoding for cross-language CFI (2)
Using Itanium C++ ABI mangling for encoding (1) provides cross-language LLVM CFI support
with C- and C++-compiled code as is, provides more comprehensive protection by satisfying all
previous items, does not require changes to Clang (either to implement a new encoding or to be
able to identify and encode uses of Rust types across the FFI boundary), and does not require
new Clang extensions and changes to C and C++ code and libraries (either to be able to identify
and encode uses of Rust types across the FFI boundary or to indicate which functions are
called across the FFI boundary).



While using Itanium C++ ABI mangling for encoding (1) requires defining a comprehensive
encoding for Rust types using (language or vendor) extended types and implementing it in the
Rust compiler, creating a new encoding for cross-language CFI (2) requires defining
comprehensive encodings for both Rust and C and C++ types using (language or vendor)
extended types, and implementing them in both the Rust compiler and Clang respectively. This
introduces as much complexity and work as redefining Itanium C++ ABI mangling and
reimplementing it in Clang.

Additionally, creating a new encoding for cross-language CFI (2), depending on its
requirements, may provide less comprehensive protection by either using a generalized
encoding for all C- and C++-compiled code or across the FFI boundary, not satisfying all
previous items, and will degrade the security of the program when linking foreign Rust-compiled
code into a program written in C or C++ because the program previously used a more
comprehensive encoding for all its compiled code.

Table II summarizes the advantages and disadvantages of using Itanium C++ ABI mangling for
encoding (1) versus creating a new encoding for cross-language CFI (2).

Table II
Summary of advantages and disadvantages of using Itanium C++ ABI mangling for encoding (1) versus

creating a new encoding for cross-language CFI (2).

Using Itanium C++ ABI mangling for encoding Creating a new encoding for cross-language
CFI

▲I Provides cross-language LLVM CFI support
with C- and C++-compiled code as is.
▲ Provides more comprehensive protection by
satisfying all previous items.
▲ Does not require changes to Clang (either to
implement a new encoding or to be able to identify
and encode uses of Rust types across the FFI
boundary).
▲ Does not require new Clang extensions and
changes to C and C++ code and libraries (either
to be able to identify and encode uses of Rust
types across the FFI boundary or to indicate which
functions are called across the FFI boundary).
▼II Requires changes to the Rust compiler (to be
able to identify and encode uses of C and C++
types across the FFI boundary).
▼ Requires defining a comprehensive encoding
for Rust types using (language or vendor)
extended types and implementing it in the Rust
compiler.

▼ Provides less comprehensive protection by
either using a generalized encoding for all C- and
C++-compiled code or across the FFI boundary.III
▼ Requires changes to Clang (either to
implement the new encoding or to be able to
identify and encode uses of Rust types across the
FFI boundary).
▼ Requires new Clang extensions and changes
to C and C++ code and libraries (either to be able
to identify and encode uses of Rust types across
the FFI boundary or to indicate which functions
are called across the FFI boundary).III
▼ Requires defining a comprehensive encoding
for Rust types using (language or vendor)
extended types and implementing it in the Rust
compiler.
▼ Requires defining a comprehensive encoding
for C and C++ types using (language or vendor)
extended types and implementing it in Clang. This
introduces as much complexity and work as
redefining Itanium C++ ABI mangling and
reimplementing it in Clang.

IGreen up-pointing triangle (▲) precedes a positive indicator.
IIRed down-pointing triangle (▼) precedes a negative indicator.
IIIMutually exclusive.



Defined type metadata identifiers (using Itanium C++ ABI
mangling for encoding)
Table III defines type metadata identifiers for cross-language LLVM CFI support using Itanium
C++ ABI mangling for encoding (1).

Table III
Type metadata identifiers for cross-language LLVM CFI support using Itanium C++ ABI mangling for

encoding with vendor extended type qualifiers and types for Rust types that are not used across the FFI
boundary.

Rust type Rust encoding Itanium C++ ABI type Itanium C++ ABI
encoding

()4 v void v

*mut core::ffi::c_void,
*const core::ffi::c_void5

P[K]v void *, const void * P[K]v

bool b bool b

core::ffi(::cfi)::c_char c char c

core::ffi(::cfi)::c_schar a signed char a

core::ffi(::cfi)::c_short s short s

core::ffi(::cfi)::c_int s int i

core::ffi(::cfi)::c_long l long l

core::ffi(::cfi)::c_longlon
g

x long long, __int64 x

core::ffi(::cfi)::c_ssize_t i long, long long, __int64 l, x

core::ffi(::cfi)::c_uchar h unsigned char h

core::ffi(::cfi)::c_ushort t unsigned short t

core::ffi(::cfi)::c_uint s unsigned int i

core::ffi(::cfi)::c_ulong m unsigned long m

core::ffi(::cfi)::c_ulonglo
ng

y unsigned long long,
__int64

y

5 *mut c_void is equivalent to void* in C and *const c_void is equivalent to const void* in C. Not the same
as void return type in C, which is equivalent to () (i.e., unit type) in Rust.

4 () (i.e., unit type) is equivalent to void return type in C.



core::ffi(::cfi)::c_size_t j unsigned long,
unsigned long long,
__int64

m, y

i8 u2i8 signed char a

i16 u3i16 short s

i32 u3i32 int, long i, l

i64 u3i64 long, long long, __int64 l, x

i128 u4i128 __int128 n

isize u5isize long, long long, __int64 l, x

u8 u2u8 unsigned char h

u16 u3u16 unsigned short t

u32 u3u32 unsigned int, unsigned
long

j, m

u64 u3u64 unsigned long,
unsigned long long,
__int64

m, y

u128 u4u128 unsigned __int128 o

usize u5usize unsigned long,
unsigned long long,
__int64

m, y

f32 f float f

f64 d double d

...6 z ellipsis z

char u4char n/a

str u3str n/a

never u5never n/a

tuple u5tupleI<element-type1
..element-typeN>E

n/a

array A<array-length><eleme
nt-type>

n/a

slice u5sliceI<element-type>
E

n/a

6 Variadic parameters can only be specified with extern function types with the "C" calling convention.



struct, enum, union <length><name>,
where <name> is
<unscoped-name>;
<element-type1>;
u<length><name>[I<ele
ment-type1..element-ty
peN>E], where
<element-type> is
<subst>

struct, enum, union <length><name>

extern type <length><name>,
where <name> is
<unscoped-name>

struct, enum, union <length><name>

reference [U3mut]u3refI<element-
type>E

n/a

raw pointer P[K]<element-type> pointer P[K]<element-type>

function pointer,
function item, closure,
Fn trait object

PF<return-type><para
meter-type1..parameter
-typeN>E

function pointer PF<return-type><para
meter-type1..parameter
-typeN>E

trait object u3dynI<element-type1[.
.element-typeN]>E,
where <element-type>
is <predicate>

n/a

lifetime/region u6region[I[<region-disa
mbiguator>]<region-ind
ex>E]

n/a

const L<element-type>[n][<el
ement-value>]E

n/a

To minimize the length of external names, the Itanium C++ ABI specifies a substitution encoding
(i.e., compression)[14] to eliminate repetition of name components, which ends up also being
applied to type metadata identifiers. Therefore, compression will also be implemented as
specified in the Itanium C++ ABI Compression[14].

Encoding C integer types
Rust defines char as an Unicode scalar value, while C defines char as an integer type. Rust
also defines explicitly-sized integer types (i.e., i8, i16, i32, ...), while C defines abstract integer
types (i.e., char, short, long, ...), whose actual sizes are implementation defined and may vary
across different data models. This causes ambiguity if Rust integer types are used in extern

"C" function types that represent C functions because the Itanium C++ ABI specifies encodings
for C integer types (e.g., char, short, long, ...), not their defined representations (e.g., 8-bit
signed integer, 16-bit signed integer, 32-bit signed integer, ...).

For example, the Rust compiler currently is unable to identify if an



extern "C" {

fn func(arg: i64);

}

Fig. 1. Example extern "C" function using Rust integer type.

represents a void func(long arg) or void func(long long arg) in an LP64 or equivalent
data model.

For cross-language LLVM CFI support, the Rust compiler must be able to identify and correctly
encode C types in extern "C" function types indirectly called across the FFI boundary when
CFI is enabled.

For convenience, Rust provides some C-like type aliases for use when interoperating with
foreign code written in C, and these C type aliases may be used for disambiguation. However,
when types are encoded, all type aliases are already resolved to their respective ty::Ty type
representations[15] (i.e., their respective Rust aliased types) making it currently impossible to
identify C type aliases use from their resolved types.

For example, the Rust compiler currently is also unable to identify that an

extern "C" {

fn func(arg: c_long);

}

Fig. 2. Example extern "C" function using C type alias.

used the c_long type alias and is not able to disambiguate between it and an extern "C" fn

func(arg: c_longlong) in an LP64 or equivalent data model when types are encoded.

To solve this, an RFC will be submitted proposing improving the existing set of C types in
core::ffi or creating a new set of C types in core::ffi::cfi as user-defined types using
repr(transparent) to be used in extern "C" function types indirectly called across the FFI
boundary when cross-language LLVM CFI support is needed (see Table III). This improved or
new set of C types will be used by the Rust compiler to identify and correctly encode C types in
extern "C" function types indirectly called across the FFI boundary when CFI is enabled.

The cfi_encoding attribute
To provide flexibility for the user, a cfi_encoding attribute will also be provided. The
cfi_encoding attribute will allow the user to define the CFI encoding for user-defined types.

#![feature(cfi_encoding, extern_types)]

#[cfi_encoding = "3Foo"]



pub struct Type1(i32);

extern {

#[cfi_encoding = "3Bar"]

type Type2;

}

Fig. 3. Example user-defined types using the cfi_encoding attribute.

For example, it will allow the user to use different names for types that otherwise would be
required to have the same name as used in externally defined C functions (see Fig. 3).

Defined type metadata identifiers (creating a new encoding for
cross-language CFI)
Creating a new encoding for cross-language CFI (2) was also explored with the Clang CFI
team. This new encoding needed to be language agnostic and ideally compatible with any other
language. It also needed to support extended types in case it was used as the main encoding to
provide forward-edge control flow protection.

However, to satisfy these requirements, this new encoding neither distinguishes between certain
types (e.g., bool, char, integers, and enums) nor discriminates between pointed element types.

This results in less comprehensive protection by either using a generalized encoding for all C-
and C++-compiled code or across the FFI boundary, and will degrade the security of the
program when linking foreign Rust-compiled code into a program written in C or C++ because
the program previously used a more comprehensive encoding for all its compiled code.

This encoding may be provided as an alternative option for interoperating with foreign code
written in languages other than C and C++ or that can not use Itanium C++ ABI mangling for
encoding.

Table IV defines type metadata identifiers for cross-language LLVM CFI support creating a new
encoding for cross-language CFI (2).

Table IV
Type metadata identifiers for cross-language LLVM CFI support creating a new encoding for

cross-language CFI with extended types for Rust types that are not used across the FFI boundary.

Rust type Rust encoding New encoding for
cross-language CFI
type

New encoding for
cross-language CFI
encoding

()7 v void v

*mut core::ffi::c_void, P void *, const void * P

7 () (i.e., unit type) is equivalent to void return type in C.



*const core::ffi::c_void8

bool U8 n/a

i8 I8 8-bit unsigned integer I8

i16 I16 16-bit unsigned integer I16

i32 I32 32-bit unsigned integer I32

i64 I64 64-bit unsigned integer I64

i128 I128 128-bit unsigned
integer

I128

isize IN, where N is pointer
size

n/a

u8 U8 Two's-complement 8-bit
signed integer

U8

u16 U16 Two's-complement
16-bit signed integer

U16

u32 U32 Two's-complement
32-bit signed integer

U32

u64 U64 Two's-complement
64-bit signed integer

U64

u128 U128 Two's-complement
128-bit signed integer

U128

usize UN, where N is pointer
size

n/a

f32 F32 IEEE 754 32-bit base-2
floating point

F32

f64 F64 IEEE 754 64-bit base-2
floating point

F64

...9 z ellipsis z

char <lang-prefix>4char n/a

str <lang-prefix>3str n/a

never <lang-prefix>5never n/a

tuple <lang-prefix>5tupleI<el n/a

9 Variadic parameters can only be specified with extern function types with the "C" calling convention.

8 *mut c_void is equivalent to void* in C and *const c_void is equivalent to const void* in C. Not the same
as void return type in C, which is equivalent to () (i.e., unit type) in Rust.



ement-type1..element-t
ypeN>E

array A<array-length><eleme
nt-type>

n/a

slice <lang-prefix>5sliceI<ele
ment-type>E

n/a

struct, union S<length><name>,
where <name> is
<unscoped-name>;
<element-type1>;
<lang-prefix><length><
name>[I<element-type1
..element-typeN>E],
where <element-type>
is <subst>

struct, union S<length><name>

enum IN, UN, where N is the
enum layout size;
<lang-prefix><length><
name>[I<element-type1
..element-typeN>E],
where <element-type>
is <subst>

enum IN, UN, where N is the
enum layout size

reference <lang-prefix>[U3mut]u3
refI<element-type>E

n/a

raw pointer P pointer P

function pointer,
function item, closure,
Fn trait object

P function pointer P

trait object <lang-prefix>3dynI<ele
ment-type1[..element-ty
peN]>E, where
<element-type> is
<predicate>

n/a

lifetime/region <lang-prefix>u6region[I[
<region-disambiguator>
]<region-index>E]

n/a

const <lang-prefix>L<element
-type>[n][<element-valu
e>]E

n/a

This encoding may be formally specified in a separate document.



Dependency considerations
LLVM CFI support depends on LLVM for code generation, the LowerTypeTests LLVM
optimization pass, and Link Time Optimization (LTO). The Rust compiler already supports using
LLVM for code generation, supports LTO, and the LowerTypeTests pass is already included in
the default optimization pipelines for LTO.

Work estimates
LLVM CFI support for Rust work is broken in these steps:

● Create tracking issue (rust-lang/rust#89653)—done.
● Add option to the Rust compiler driver and frontend (rust-lang/rust#89652)—done.
● Add support for emitting type metadata and checks to the Rust compiler code generation

(rust-lang/rust#89652)—done.
● Implement Rust-compiled code only LLVM CFI support by using Rust-specific type

metadata identifiers (rust-lang/rust#89652, rust-lang/rust#95548)—done.
● Define type metadata identifiers for cross-language LLVM CFI support (See Type

metadata)—done.
● Change initial implementation to use the defined type metadata identifiers for

cross-language LLVM CFI support (rust-lang/rust#95548, rust-lang/rfcs#3296,
https://reviews.llvm.org/D139395, rust-lang/rust#105452)—done.

● Create documentation and tests (rust-lang/rust#89652, rust-lang/rustc-dev-guide#1234,
rust-lang/rust#95548, rust-lang/rust#105452)—done.

Results
LLVM CFI support in the Rust compiler provides forward-edge control flow protection for both
Rust-compiled code only and for C or C++ and Rust-compiled code mixed-language binaries,
also known as “mixed binaries” (i.e., for when C or C++ and Rust-compiled code share the
same virtual address space), by aggregating function pointers in groups identified by their return
and parameter types.

LLVM CFI can be enabled with -Zsanitizer=cfi and requires LTO (i.e.,
-Clinker-plugin-lto or -Clto). Cross-language LLVM CFI can be enabled with
-Zsanitizer=cfi, and requires the -Zsanitizer-cfi-normalize-integers option to be
used with the Clang -fsanitize-cfi-icall-experimental-normalize-integers option for
cross-language LLVM CFI support, and proper (i.e., non-rustc) LTO (i.e.,
-Clinker-plugin-lto).

It is recommended to rebuild the standard library with CFI enabled by using the Cargo build-std
feature (i.e., -Zbuild-std) when enabling CFI.

https://github.com/rust-lang/rust/issues/89653
https://github.com/rust-lang/rust/pull/89652
https://github.com/rust-lang/rust/pull/89652
https://github.com/rust-lang/rust/pull/89652
https://github.com/rust-lang/rust/pull/95548
https://github.com/rust-lang/rust/pull/95548
https://github.com/rust-lang/rfcs/pull/3296
https://reviews.llvm.org/D139395
https://github.com/rust-lang/rust/pull/105452
https://github.com/rust-lang/rust/pull/89652
https://github.com/rust-lang/rustc-dev-guide/pull/1234
https://github.com/rust-lang/rust/pull/95548
https://github.com/rust-lang/rust/pull/105452


Example 1: Redirecting control flow using an indirect branch/call
to an invalid destination

#![feature(naked_functions)]

use std::arch::asm;

use std::mem;

fn add_one(x: i32) -> i32 {

x + 1

}

#[naked]

pub extern "C" fn add_two(x: i32) {

// x + 2 preceded by a landing pad/nop block

unsafe {

asm!(

"

nop

nop

nop

nop

nop

nop

nop

nop

nop

lea eax, [rdi+2]

ret

",

options(noreturn)

);

}

}

fn do_twice(f: fn(i32) -> i32, arg: i32) -> i32 {

f(arg) + f(arg)

}

fn main() {

let answer = do_twice(add_one, 5);

println!("The answer is: {}", answer);

println!("With CFI enabled, you should not see the next answer");

let f: fn(i32) -> i32 = unsafe {

// Offset 0 is a valid branch/call destination (i.e., the function entry

// point), but offsets 1-8 within the landing pad/nop block are invalid

// branch/call destinations (i.e., within the body of the function).

mem::transmute::<*const u8, fn(i32) -> i32>((add_two as *const u8).offset(5))



};

let next_answer = do_twice(f, 5);

println!("The next answer is: {}", next_answer);

}

Fig. 4. Redirecting control flow using an indirect branch/call to an invalid destination (i.e., within the body
of the function).

$ cargo run --release

Compiling rust-cfi-1 v0.1.0 (/home/rcvalle/rust-cfi-1)

Finished release [optimized] target(s) in 0.43s

Running `target/release/rust-cfi-1`

The answer is: 12

With CFI enabled, you should not see the next answer

The next answer is: 14

$

Fig. 5. Build and execution of Fig. 4 with LLVM CFI disabled.

$ RUSTFLAGS="-Clinker-plugin-lto -Clinker=clang -Clink-arg=-fuse-ld=lld -Zsanitizer=cfi"

cargo run -Zbuild-std -Zbuild-std-features --release --target x86_64-unknown-linux-gnu

...

Compiling rust-cfi-1 v0.1.0 (/home/rcvalle/rust-cfi-1)

Finished release [optimized] target(s) in 1m 08s

Running `target/x86_64-unknown-linux-gnu/release/rust-cfi-1`

The answer is: 12

With CFI enabled, you should not see the next answer

Illegal instruction

$

Fig. 6. Build and execution of Fig. 4 with LLVM CFI enabled.

When LLVM CFI is enabled, if there are any attempts to redirect control flow using an indirect
branch/call to an invalid destination, the execution is terminated (see Fig. 6).

Example 2: Redirecting control flow using an indirect branch/call
to a function with a different number of parameters

use std::mem;

fn add_one(x: i32) -> i32 {

x + 1

}

fn add_two(x: i32, _y: i32) -> i32 {

x + 2

}



fn do_twice(f: fn(i32) -> i32, arg: i32) -> i32 {

f(arg) + f(arg)

}

fn main() {

let answer = do_twice(add_one, 5);

println!("The answer is: {}", answer);

println!("With CFI enabled, you should not see the next answer");

let f: fn(i32) -> i32 =

unsafe { mem::transmute::<*const u8, fn(i32) -> i32>(add_two as *const u8) };

let next_answer = do_twice(f, 5);

println!("The next answer is: {}", next_answer);

}

Fig. 7. Redirecting control flow using an indirect branch/call to a function with a different number of
parameters than arguments intended/passed in the call/branch site.

$ cargo run --release

Compiling rust-cfi-2 v0.1.0 (/home/rcvalle/rust-cfi-2)

Finished release [optimized] target(s) in 0.43s

Running `target/release/rust-cfi-2`

The answer is: 12

With CFI enabled, you should not see the next answer

The next answer is: 14

$

Fig. 8. Build and execution of Fig. 7 with LLVM CFI disabled.

$ RUSTFLAGS="-Clinker-plugin-lto -Clinker=clang -Clink-arg=-fuse-ld=lld -Zsanitizer=cfi"

cargo run -Zbuild-std -Zbuild-std-features --release --target x86_64-unknown-linux-gnu

...

Compiling rust-cfi-2 v0.1.0 (/home/rcvalle/rust-cfi-2)

Finished release [optimized] target(s) in 1m 08s

Running `target/x86_64-unknown-linux-gnu/release/rust-cfi-2`

The answer is: 12

With CFI enabled, you should not see the next answer

Illegal instruction

$

Fig. 9. Build and execution of Fig. 7 with LLVM CFI enabled.

When LLVM CFI is enabled, if there are any attempts to redirect control flow using an indirect
branch/call to a function with a different number of parameters than arguments intended/passed
in the call/branch site, the execution is also terminated (see Fig. 9).



Example 3: Redirecting control flow using an indirect branch/call
to a function with different return and parameter types

use std::mem;

fn add_one(x: i32) -> i32 {

x + 1

}

fn add_two(x: i64) -> i64 {

x + 2

}

fn do_twice(f: fn(i32) -> i32, arg: i32) -> i32 {

f(arg) + f(arg)

}

fn main() {

let answer = do_twice(add_one, 5);

println!("The answer is: {}", answer);

println!("With CFI enabled, you should not see the next answer");

let f: fn(i32) -> i32 =

unsafe { mem::transmute::<*const u8, fn(i32) -> i32>(add_two as *const u8) };

let next_answer = do_twice(f, 5);

println!("The next answer is: {}", next_answer);

}

Fig. 10. Redirecting control flow using an indirect branch/call to a function with different return and
parameter types than the return type expected and arguments intended/passed at the call/branch site.

$ cargo run --release

Compiling rust-cfi-3 v0.1.0 (/home/rcvalle/rust-cfi-3)

Finished release [optimized] target(s) in 0.44s

Running `target/release/rust-cfi-3`

The answer is: 12

With CFI enabled, you should not see the next answer

The next answer is: 14

$

Fig. 11. Build and execution of Fig. 10 with LLVM CFI disabled.

$ RUSTFLAGS="-Clinker-plugin-lto -Clinker=clang -Clink-arg=-fuse-ld=lld -Zsanitizer=cfi"

cargo run -Zbuild-std -Zbuild-std-features --release --target x86_64-unknown-linux-gnu

...

Compiling rust-cfi-3 v0.1.0 (/home/rcvalle/rust-cfi-3)

Finished release [optimized] target(s) in 1m 07s



Running `target/x86_64-unknown-linux-gnu/release/rust-cfi-3`

The answer is: 12

With CFI enabled, you should not see the next answer

Illegal instruction

$

Fig. 12. Build and execution of Fig. 10 with LLVM CFI enabled.

When LLVM CFI is enabled, if there are any attempts to redirect control flow using an indirect
branch/call to a function with different return and parameter types than the return type expected
and arguments intended/passed at the call/branch site, the execution is also terminated (see
Fig. 12).

Example 4: Redirecting control flow using an indirect branch/call
to a function with different return and parameter types across the
FFI boundary

int

do_twice(int (*fn)(int), int arg)

{

return fn(arg) + fn(arg);

}

Fig. 13. Example C library.

use std::mem;

#[link(name = "foo")]

extern "C" {

fn do_twice(f: unsafe extern "C" fn(i32) -> i32, arg: i32) -> i32;

}

unsafe extern "C" fn add_one(x: i32) -> i32 {

x + 1

}

unsafe extern "C" fn add_two(x: i64) -> i64 {

x + 2

}

fn main() {

let answer = unsafe { do_twice(add_one, 5) };

println!("The answer is: {}", answer);

println!("With CFI enabled, you should not see the next answer");

let f: unsafe extern "C" fn(i32) -> i32 = unsafe {



mem::transmute::<*const u8, unsafe extern "C" fn(i32) -> i32>(add_two as *const u8)

};

let next_answer = unsafe { do_twice(f, 5) };

println!("The next answer is: {}", next_answer);

}

Fig. 14. Redirecting control flow using an indirect branch/call to a function with different return and
parameter types than the return type expected and arguments intended/passed in the call/branch site,
across the FFI boundary.

$ make

mkdir -p target/release

clang -I. -Isrc -Wall -c src/foo.c -o target/release/libfoo.o

llvm-ar rcs target/release/libfoo.a target/release/libfoo.o

RUSTFLAGS="-L./target/release -Clinker=clang -Clink-arg=-fuse-ld=lld" cargo build --release

Compiling rust-cfi-4 v0.1.0 (/home/rcvalle/rust-cfi-4)

Finished release [optimized] target(s) in 0.49s

$ ./target/release/rust-cfi-4

The answer is: 12

With CFI enabled, you should not see the next answer

The next answer is: 14

$

Fig. 15. Build and execution of Figs. 13–14 with LLVM CFI disabled.

$ make

mkdir -p target/release

clang -I. -Isrc -Wall -flto -fsanitize=cfi

-fsanitize-cfi-icall-experimental-normalize-integers -fvisibility=hidden -c -emit-llvm

src/foo.c -o target/release/libfoo.bc

llvm-ar rcs target/release/libfoo.a target/release/libfoo.bc

RUSTFLAGS="-L./target/release -Clinker-plugin-lto -Clinker=clang -Clink-arg=-fuse-ld=lld

-Zsanitizer=cfi -Zsanitizer-cfi-normalize-integers" cargo build -Zbuild-std

-Zbuild-std-features --release --target x86_64-unknown-linux-gnu

...

Compiling rust-cfi-4 v0.1.0 (/home/rcvalle/rust-cfi-4)

Finished release [optimized] target(s) in 1m 06s

$ ./target/x86_64-unknown-linux-gnu/release/rust-cfi-4

The answer is: 12

With CFI enabled, you should not see the next answer

Illegal instruction

$

Fig. 16. Build and execution of Figs. 13–14 with LLVM CFI enabled.

When LLVM CFI is enabled, if there are any attempts to redirect control flow using an indirect
branch/call to a function with different return and parameter types than the return type expected
and arguments intended/passed in the call/branch site, even across the FFI boundary and for
extern "C" function types indirectly called (i.e., callbacks/function pointers) across the FFI
boundary, the execution is also terminated (see Fig. 16).



Acknowledgments
Thanks to bjorn3 (Björn Roy Baron), compiler-errors (Michael Goulet), eddyb (Eduard-Mihai
Burtescu), matthiaskrgr (Matthias Krüger), mmaurer (Matthew Maurer), nagisa (Simonas
Kazlauskas), pcc (Peter Collingbourne), pnkfelix (Felix Klock), samitolvanen (Sami Tolvanen),
tmiasko (Tomasz Miąsko), and the Rust community for all their help throughout this project.

References
1. Y. Song. “On Control Flow Hijacks of unsafe Rust.” GitHub.

https://stanford-cs242.github.io/f17/assets/projects/2017/songyang.pdf.
2. A. Paverd. “Control Flow Guard for Rust.” GitHub.

https://github.com/rust-lang/rust/files/4723836/Control.Flow.Guard.for.Rust.pdf.
3. A. Paverd. “Control Flow Guard for LLVM.” GitHub.

https://github.com/rust-lang/rust/files/4723840/Control.Flow.Guard.for.LLVM.pdf.
4. M. Papaevripides and E. Athanasopoulos. “Exploiting Mixed Binaries.” ACM.

https://dl.acm.org/doi/pdf/10.1145/3418898.
5. B. Spengler. “Open Source Security, Inc. Announces Funding of GCC Front-End for

Rust.” Open Source Security.
https://opensrcsec.com/open_source_security_announces_rust_gcc_funding

6. R. de C Valle. “Exploit Mitigations.” The rustc book.
https://doc.rust-lang.org/nightly/rustc/exploit-mitigations.html.

7. “LLVM ControlFlowIntegrity (CFI).” Clang Documentation.
https://clang.llvm.org/docs/ControlFlowIntegrity.html.

8. “Frequently Asked Questions About RAP.” Open Source Security.
https://grsecurity.net/rap_faq.

9. “Backend Agnostic Codegen.” Guide to Rustc Development.
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html.

10. “Type Metadata.” LLVM Documentation. https://llvm.org/docs/TypeMetadata.html.
11. “Itanium C++ ABI”. https://itanium-cxx-abi.github.io/cxx-abi/abi.html.
12. “Virtual Tables and RTTI”. Itanium C++ ABI.

https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling-special-vtables.
13. “Type Encodings”. Itanium C++ ABI.

https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling-type.
14. “Compression”. Itanium C++ ABI.

https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling-compression.
15. “The ty module: representing types”. Guide to Rustc Development.

https://rustc-dev-guide.rust-lang.org/ty.html.

https://stanford-cs242.github.io/f17/assets/projects/2017/songyang.pdf
https://github.com/rust-lang/rust/files/4723836/Control.Flow.Guard.for.Rust.pdf
https://github.com/rust-lang/rust/files/4723840/Control.Flow.Guard.for.LLVM.pdf
https://dl.acm.org/doi/pdf/10.1145/3418898
https://opensrcsec.com/open_source_security_announces_rust_gcc_funding
https://doc.rust-lang.org/nightly/rustc/exploit-mitigations.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://grsecurity.net/rap_faq
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html
https://llvm.org/docs/TypeMetadata.html
https://itanium-cxx-abi.github.io/cxx-abi/abi.html
https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling-special-vtables
https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling-type
https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling-compression
https://rustc-dev-guide.rust-lang.org/ty.html

